Acta Univ. Bohem. Merid. 2021, 24(3):57-76 | DOI: 10.32725/acta.2021.0121674

A Bibliometric Mapping of Utilization of Google Trends for Examining Stock Market Dynamics

Divya Jain, Meghna Chhabra
Manav Rachna International Institute of Research and Studies, Faridabad

In the last two decades, research into the use of the internet to evaluate investor interest in stock markets has exploded, fueled by a surge in interest and publishing by academic experts. The current research examines the academic literature on the role of internet web search-based inquiries in investors' investing decisions. The study emphasizes the present state-of-the-art and reveals significant gaps in the available literature on investor attention using bibliometric approaches. The study obtained research publications from the Scopus database using keyword and reference searching methods. Specifically, the study focuses on citation analysis, keyword analysis, co-authorship and bibliographic coupling to comprehensively reveal and analyze the publication contribution of the utility of google trends in the stock market activity. The work reveals prolific authors, most contributing documents, most productive countries, predominant domains and utility of google trends the for purpose of forecasting and predicting.

Keywords: Bibliometric, Google Trends, Investor Attention, Stock Market Returns, VOS Viewer.
JEL classification: C15, C32, G12, P28

Received: February 23, 2022; Revised: February 23, 2022; Prepublished online: February 23, 2022; Published: February 22, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Jain, D., & Chhabra, M. (2021). A Bibliometric Mapping of Utilization of Google Trends for Examining Stock Market Dynamics. Acta Universitatis Bohemiae Meridionalis24(3), 57-76. doi: 10.32725/acta.2021.012
Download citation

References

  1. Abdulrasool, H. D., & Othman, R. B. (2020). A review and bibliometric analysis of global research trends on the behavioural finance using scopus databases. International Journal of Management (IJM), 11(10). http://www.iaeme.com/IJM/issues.asp?JType=IJM&VType=11&IType=10
  2. Avilés-Ochoa, E., Flores-Sosa, M., & Merigó, J. M. (2021). A bibliometric overview of volatility. Journal of Intelligent & Fuzzy Systems, 40(2), 1997-2009. https://doi.org/10.3233/jifs-189202 Go to original source...
  3. Bagane, P., Mehta, N., Kakde, P., Bramhbhatt, N., Sahni, I., & Kotrappa, S. (2021). Bibliometric Survey for Stock Market Prediction using Sentimental Analysis and LSTM. Library Philosophy and Practice, 0_1-21. https://digitalcommons.unl.edu/libphilprac/5335
  4. Bank, M., Larch, M., & Peter, G. (2011). Google search volume and its influence on liquidity and returns of German stocks. Financial Markets and Portfolio Management, 25(3). https://doi.org/10.1007/s11408-011-0165-y Go to original source...
  5. Boyack, K. W., & Klavans, R. (2010). Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? Journal of the American Society for Information Science and Technology, 61(12), 2389-2404. https://doi.org/10.1002/asi.21419 Go to original source...
  6. Chhabra, M., & Agarwal, M. (In press). Bibliometric history of the journal "International Journal of Technology Transfer and Commercialisation" between 2002 and 2021. International Journal of Technology Transfer and Commercialisation.
  7. Chhabra, M., Dana, L. P., Ramadani, V., & Agarwal, M. (2021). A retrospective overview of Journal of Enterprising Communities: People and Places in the Global Economy from 2007 to 2021 using a bibliometric analysis. Journal of Enterprising Communities: People and Places in the Global Economy, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/JEC-06-2021-0091 Go to original source...
  8. Choijil, E., Méndez, C. E., Wong, W. K., Vieito, J. P., & Batmunkh, M. U. (2022). Thirty years of herd behavior in financial markets: A bibliometric analysis. Research in International Business and Finance, 59, 101506. https://doi.org/10.1016/j.ribaf.2021.101506 Go to original source...
  9. Da, Z., Engelberg, J., & Gao, P. (2011). In search of attention. The Journal of Finance, 66(5), 1461-1499. Go to original source...
  10. Fariska, P., & Nugraha, M. M. A. R. (2021, September). Defining and Measuring Microblogging Sentiment Investors on Stock Market: A Literature Review. In 5th Global Conference on Business, Management and Entrepreneurship (GCBME 2020) (pp. 29-35). Atlantis Press. Go to original source...
  11. Farrukh, M., Shahzad, I. A., Meng, F., Wu, Y., & Raza, A. (2020). Three decades of research in the technology analysis & strategic management: a bibliometrics analysis. Technology Analysis & Strategic Management, 33(9), 989-1005. https://doi.org/10.1080/09537325.2020.1862413 Go to original source...
  12. Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012-1014. Go to original source...
  13. Gupta, A., & Jose, D. V. (2019). A method to secure FIR system using blockchain. International Journal of Recent Technology and Engineering (IJRTE), 8(1), 4, 626-629.
  14. Hassan, R., Chhabra, M., Shahzad, A., Fox, D., & Hassan, S. (2021). A Bibliometric Analysis of Journal of International Women's Studies for Period of 2002-2019: Current Status, Development, and Future Research Directions. Journal of International Women's Studies, 22(1), 1-37.
  15. Jun, S. P., Yoo, H. S., & Choi, S. (2018). Ten years of research change using Google Trends: From the perspective of big data utilizations and applications. Technological Forecasting and Social Change, 130, 69-87. https://doi.org/10.1016/j.techfore.2017.11.009 Go to original source...
  16. Kessler, M. M. (1963). Bibliographic coupling between scientific papers. American Documentation, 14(1), 10-25. https://doi.org/10.1002/asi.5090140103 Go to original source...
  17. Komalasari, P. T., Asri, M., Purwanto, B. M., & Setiyono, B. (2021). Herding behaviour in the capital market: What do we know and what is next? Management Review Quarterly. Published. https://doi.org/10.1007/s11301-021-00212-1 Go to original source...
  18. Kovács, A., van Looy, B., & Cassiman, B. (2015). Exploring the scope of open innovation: a bibliometric review of a decade of research. Scientometrics, 104(3), 951-983. https://doi.org/10.1007/s11192-015-1628-0 Go to original source...
  19. Kumar, A. & Ayedee, N. (2018). Social Media Tools for Business Growth of SMES. Journal of Management, 5(3), 2018, 137-142. http://www.iaeme.com/jom/issues.asp?JType=JOM&VType=5&IType=3
  20. Kumar, A., Syed, A. A., & Pandey, A. (2021). Adoption of Online Resources to Improve the Marketing Performance of SMEs. Asia Pacific Journal of Health Management, 16(3), 137-144. https://doi.org/10.24083/apjhm.v16i3.1009 Go to original source...
  21. López-Cabarcos, M. N., Pérez-Pico, A. M., Vázquez-Rodríguez, P., & López-Pérez, M. L. (2019). Investor sentiment in the theoretical field of behavioural finance. Economic Research-Ekonomska Istraživanja, 33(1), 2101-2119. https://doi.org/10.1080/1331677x.2018.1559748 Go to original source...
  22. Martyn, J. (1964). Bibliographic Coupling. Journal of Documentation, 20(4), 236. https://doi.org/10.1108/eb026352 Go to original source...
  23. Merediz-Solà, I., & Bariviera, A. F. (2019). A bibliometric analysis of bitcoin scientific production. Research in International Business and Finance, 50, 294-305. https://doi.org/10.1016/j.ribaf.2019.06.008 Go to original source...
  24. Paule-Vianez, J., Gómez-Martínez, R., & Prado-Román, C. (2020). A bibliometric analysis of behavioural finance with mapping analysis tools. European Research on Management and Business Economics, 26(2), 71-77. https://doi.org/10.1016/j.iedeen.2020.01.001 Go to original source...
  25. Qadan, M., & Nama, H. (2018). Investor sentiment and the price of oil. Energy Economics, 69, 42-58. https://doi.org/10.1016/j.eneco.2017.10.035 Go to original source...
  26. Su, Y., Qu, Y., & Kang, Y. (2021). Online public opinion and asset prices: a literature review. Data Science in Finance and Economics, 1(1), 60-76. https://doi.org/10.3934/dsfe.2021004 Go to original source...
  27. Tantaopas, P., Padungsaksawasdi, C., & Treepongkaruna, S. (2016). Attention effect via internet search intensity in Asia-Pacific stock markets. Pacific-Basin Finance Journal, 38, 107-124. Go to original source...
  28. Urquhart, A. (2018). What causes the attention of Bitcoin? Economics Letters, 166, 40-44. https://doi.org/10.1016/j.econlet.2018.02.017 Go to original source...
  29. Valcanover, V. M., Sonza, I. B., & da Silva, W. V. (2020). Behavioral Finance Experiments: A Recent Systematic Literature Review. SAGE Open, 10(4), 215824402096967. https://doi.org/10.1177/2158244020969672 Go to original source...
  30. Vicente, M. R., López-Menéndez, A. J., & Pérez, R. (2015). Forecasting unemployment with internet search data: Does it help to improve predictions when job destruction is skyrocketing? Technological Forecasting and Social Change, 92, 132-139. https://doi.org/10.1016/j.techfore.2014.12.005 Go to original source...
  31. Vosen, S., & Schmidt, T. (2011). Forecasting private consumption: survey-based indicators vs. Google trends. Journal of Forecasting, 30(6), 565-578. https://doi.org/10.1002/for.1213 Go to original source...
  32. Vozlyublennaia, N. (2014). Investor attention, index performance, and return predictability. Journal of Banking & Finance, 41, 17-35. https://doi.org/10.1016/j.jbankfin.2013.12.010 Go to original source...
  33. Zhang, J. Z., Srivastava, P. R., Sharma, D., & Eachempati, P. (2021). Big data analytics and machine learning: A retrospective overview and bibliometric analysis. Expert Systems with Applications, 184, 115561. https://doi.org/10.1016/j.eswa.2021.115561 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.